|
The Oort constants (discovered by Jan Oort) and are empirically derived parameters that characterize the local rotational properties of our galaxy, the Milky Way, in the following manner: : where and are the rotational velocity and distance to the Galactic center, respectively, measured at the position of the Sun. As derived below, they depend only on the motions and positions of stars in the solar neighborhood. As of 1997, the most accurate values of these constants are = 14.82 ± 0.84 km s−1 kpc−1 and = -12.37 ± 0.64 km s−1 kpc−1.〔 From the Oort constants, it is possible to determine the orbital properties of the Sun, such as the orbital velocity and period, and infer local properties of the Galactic disk, such as the mass density and how the rotational velocity changes as a function of radius from the Galactic center. ==Historical significance and background== By the 1920s, a large fraction of the astronomical community had recognized that some of the diffuse, cloud-like objects, or nebulae, seen in the night sky were collections of stars located beyond our own, local collection of star clusters. These ''galaxies'' had diverse morphologies, ranging from ellipsoids to disks. The concentrated band of starlight that is the visible signature of the Milky Way was indicative of a disk structure for our galaxy; however, our location within our galaxy made structural determinations from observations difficult. Classical mechanics predicted that a collection of stars could be supported against gravitational collapse by either random velocities of the stars or their rotation about its center of mass.〔pp. 312-321, §4.4, ''Galactic dynamics (2nd edition)'', James Binney, Scott Tremaine, Princeton University Press, 2008, ISBN 978-0-691-13027-9.〕 For a disk-shaped collection, the support should be mainly rotational. Depending on the mass density, or distribution of the mass in the disk, the rotation velocity may be different at each radius from the center of the disk to the outer edge. A plot of these rotational velocities against the radii at which they are measured is called a rotation curve. For external disk galaxies, one can measure the rotation curve by observing the Doppler shifts of spectral features measured along different galactic radii, since one side of the galaxy will be moving towards our line of sight and one side away. However, our position in the Galactic midplane of the Milky Way, where dust in molecular clouds obscures most optical light in many directions, made obtaining our own rotation curve technically difficult until the discovery of the 21 cm hydrogen line in the 1930s. To confirm the rotation of our galaxy prior to this, in 1927 Jan Oort derived a way to measure the Galactic rotation from just a small fraction of stars in the local neighborhood. As described below, the values he found for and proved not only that the Galaxy was rotating but also that it rotates differentially, or as a fluid rather than a solid body. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Oort constants」の詳細全文を読む スポンサード リンク
|